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Wavelength-scanning digital interference
holography for tomographic three-dimensional
imaging by use of the angular spectrum method
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A tomographic imaging system based on wavelength-scanning digital interference holography is developed
by applying the angular spectrum method. Compared to the well-known Fresnel diffraction formula, which
is subject to a minimum distance requirement in reconstruction, the angular spectrum method can recon-
struct the wave field at any distance from the hologram plane. The new system allows three-dimensional
tomographic images to be extracted with an improved signal-to-noise ratio, a more flexible scanning range,
and an easier specimen size selection. Experiments are performed to demonstrate the effectiveness of the
method. © 2005 Optical Society of America
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Imaging techniques that reveal the tomographic
structure of biological or material tissues by use of
optical radiation has become a subject of increasing
interest. Optical coherence tomography (OCT)1 is an
effective interferometric technique that can produce
high-resolution cross-sectional images of biological
structures. This method is based on the measure-
ment of the interferometric cross correlation of the
light backscattered from the sample with the light
retroreflected from the reference mirror. The three-
dimensional image is reconstructed by scanning the
three dimensions pixel by pixel. Although microscan-
ning with piezoactuators is a well-established art, be-
ing able to obtain images frame by frame will have
obvious technical advantages. Wide-field two-
dimensional OCT has been developed as a method of
acquiring a sequence of full-field interferometric im-
ages by illumination with a broadband light source,
generating the optical section images,2,3 which can be
in natural color representation.4

We have been developing an alternative approach
called wavelength-scanning digital interference ho-
lography (WSDIH), where holographic images of an
object volume are numerically reconstructed with the
well-known Fresnel diffraction formula5 from a set of
holograms recorded by using a series of wavelengths.
The numerical superposition of all the image volumes
result in a synthesized short coherence length and
corresponding axial resolution.6,7 The Fresnel diffrac-
tion formula, however, requires that the distance be-
tween the object and the hologram be sufficiently
large in comparison to the size of the object or the ho-
logram. This is referred to as the Fresnel approxima-
tion condition. Although the Fresnel diffraction for-
mula can still give an accurate reconstruction for
smooth and slowly varying objects where the Fresnel
approximation is not strictly satisfied, it cannot cor-
rectly reconstruct near wave fields for more-
diffractive objects, where the higher-order terms in
the expansion of the Fresnel approximation are more
significant. This places a stringent limit on the scan-
ning range and specimen size and will adversely af-

fect the signal-to-noise ratio of the tomographic sys-
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tem as well. In this Letter, we describe a novel
technique for overcoming these problems by incorpo-
rating the use of an angular spectrum method8–10 in
our WSDIH system.

We start by briefly reviewing the principle of
WSDIH. Suppose an object is illuminated by a laser
beam of wavelength �. A point P (at rP) on the object
scatters the illumination beam into a Huygens wave-
let A�rP�exp�ik�r−rP��, where A�rP� is proportional to
the amplitude and phase of the scattered wavelet.
For an extended object, the field at r is

E�r� � � A�rp�exp�ik�r − rP��d3rP, �1�

where the integral is over the object volume. The am-
plitude and phase of this field at the hologram plane
z=0 is recorded by the hologram. If the holographic
process is repeated using N different wavelengths
and the reconstructed fields are all superposed to-
gether, then the resultant field is

E�r� � �
k
� A�rP�exp�ik�r − rP��d3rP

�� A�rP���r − rP�d3rP � A�r�. �2�

That is, for a large enough number of wavelengths,
the resultant field is proportional to the field at the
object and is nonzero only at the object points. In
practice, if one uses a finite number N of wavelengths
at regular intervals of ��1/��, then the object image
A�r� repeats itself (other than the diffraction–
defocusing effect of propagation) at a beat wave-
length �= ���1/���−1, with axial resolution �=� /N.
By use of appropriate values of ��1/�� and N, the
beat wavelength � can be matched to the axial extent
of the object and � to the desired level of axial reso-
lution.

The design of a WSDIH system is illustrated in
Fig. 1, where a modified Mach–Zehnder interferom-

eter apparatus is illuminated by a tunable dye laser.
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The input laser beam is split at beam splitter BS1
into reference and object beams, and each part is fo-
cused by lens L1 or L2 onto focal point F1 or F2.
Point F2 is also the front focus of objective L3, so the
object is illuminated with a collimated beam. The
light scattered from the object travels through BS2
and BS3 and reaches the CCD camera. The reference
beam’s focus F1 is the same distance from BS3 as F2
is, so it is optically equivalent to a collimated beam
incident from the left of objective L3. Plane S is im-
aged by L3 onto the camera, which records a magni-
fied image of the interference pattern of the light
scattered from the object onto S, through a distance
z, and a plane-wave reference wave that would be
present at S. The object and the reference beams are
tilted with respect to each other in an off-axis holo-
gram arrangement.

In our previous system,6,7 the Fresnel diffraction
formula was used to calculate the wave field along
the propagation direction. The resolution of the re-
constructed images determined directly from the
Fresnel diffraction formula will vary as a function of
the reconstruction distance z as �xo=�z / �M�x�,
where �x and �xo are the resolutions of the hologram
and the reconstructed image, respectively, and M
�M is the array size of a square area on the CCD. To
get consistent resolution, the Fresnel diffraction can
also be implemented as a convolution. However, both
of the above approaches assume the Fresnel approxi-
mation, which limits the flexibility and the signal-to-
noise ratio of the system, as already mentioned. By
using the angular spectrum algorithm for the
WSDIH system, however, the problems associated
with the Fresnel diffraction formula are solved.

From Fourier optics,10 if E�x ,y ;0� is the object
wave field at plane z=0, the corresponding angular

Fig. 1. Apparatus for the digital interference holography
system: M1, mirror; OBJ, object; REF, reference.

Fig. 2. (a) Hologram of a resolution target. Reconstruc-
tions from (b) the Fresnel diffraction formula, (c) Fresnel
convolution, and (d) the angular spectrum method.
spectrum of the object wave at this plane can be ob-
tained by taking the Fourier transform:

S�kx,ky;0� =� � E�x,y;0�exp�− i�kxx + kyy��dxdy,

�3�

where kx and ky are the corresponding spatial fre-
quencies of x and y. The object angular spectrum
S�kx ,ky ;0� can be separated from other spectral com-
ponents of the hologram with a bandpass filter if the
off-axis angle � of the incident beam is properly ad-
justed. The field E�x ,y ;0� can be rewritten as the in-
verse Fourier transform of its angular spectrum,

E�x,y;0� =� � S�kx,ky;0�exp�i�kxx + kyy��dkxdky.

�4�

The complex-exponential function exp�i�kxx+kyy��
may be regarded as a projection onto the plane z=0 of
a plane wave propagating with a wave vector
�kx ,ky ,kz�, where kz= �k2−kx

2−kx
2�1/2 and k=2� /�.

Thus the field E�x ,y ;0� can be viewed as a projection
of many plane-wave components propagating in dif-
ferent directions in space and with the complex am-
plitude of each component equal to S�kx ,ky ;0�. After
propagating along the z axis to a new plane, the new
angular spectrum, S�kx ,ky ;z�, at plane z can be cal-
culated as S�kx ,ky ;0�exp�ikzz�. Thus the complex
field distribution of any plane perpendicular to the
propagating z axis can be calculated from Fourier
theory as

E�x,y;z� =� � S�kx,ky;z�exp�i�kxx + kyy��dkxdky.

�5�

The resolution of the reconstructed images from
the angular spectrum method is the same as that in
the hologram plane. In spite of the apparent differ-
ences, the angular spectrum method will yield iden-
tical predictions of the diffracted field as the first
Rayleigh–Sommerfeld solution.10 However, as an ap-
proximate Rayleigh–Sommerfeld solution, Fresnel
diffraction is not capable of reconstructing the wave
field near the hologram plane.

Figure 2(a) shows the hologram of a USAF-1951
resolution target with an area of 1.535 mm
�1.535 mm and 256�256 pixels. The distance z rep-
resenting the distance from the object to the holo-
gram plane (S plane in Fig. 1) is 18 mm. The wave-

Fig. 3. (a) Hologram of a penny. Reconstructions from (b)

Fresnel convolution and (c) the angular spectrum method.
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length of the dye laser is 594 nm. The reconstructed
resolution determined directly from the Fresnel dif-
fraction formula is given by �xo=�z /M�x	7 �m,
which is slightly larger than the resolution of the ho-
logram at �x=6 �m. Thus the reconstructed image
(only amplitude is shown) is seen to be smaller in Fig.
2(b). However, reconstruction from either the Fresnel
convolution or angular spectrum method has the
same resolution as the hologram plane, as shown in
Figs. 2(c) and 2(d). It is interesting to mention that,
although the Fresnel approximation condition is not
strictly satisfied in this example, the Fresnel diffrac-
tion can still give a fairly accurate reconstruction.
This is because the resolution target is a relatively
smooth and slowly varying object, with the major
contribution to the wave field at the reconstructed
point �xo ,yo� coming from points �x ,y� for which x
	xo and y	yo on the hologram. The higher-order
terms in the expansion of the Fresnel approximation,
however, will be extremely important for a more dif-
fractive object, which is most often the case for a
WSDIH system in biological tomographic applica-
tions. In the following, we demonstrate the use of our
WSDIH system in scanning a diffuse penny with an
area of 2.62 mm�2.62 mm. The reconstruction dis-
tance z is now 3.9 mm. To achieve the tomographic
images, the wavelength of the dye laser is scanned
within the range of 575.0–605.0 nm in 20 steps. It
gives an axial range of �=220 �m and a theoretical
axial resolution of �=12 �m, which fits well with its
experimental value of �13 �m by reconstructing the
wave distribution of a mirror along different axial
distances and measuring the FWHM of the ampli-
tude profile. Figure 3(a) shows the first hologram re-
corded with �=575.0 nm, and Figs. 3(b) and 3(c)
show the reconstructed amplitude from both the
Fresnel convolution and the angular spectrum
method, respectively. The results clearly show the
significant advantage of the angular spectrum
method in calculating wave fields near the hologram
plane. In WSDIH, the optical field of a volume
around the image location is calculated by the angu-
lar spectrum method for each wavelength. The 20
three-dimensional arrays are numerically super-
posed together, resulting in the accumulated field

Fig. 4. (a) Buildup of axial resolution by superposition of
holographic images with 1, 2, 4, 8, and 20 wavelengths. (b)
Several contour images of the coin at 60 �m axial distance
intervals.
distribution that represents the three-dimensional
object structure. Figure 4(a) illustrates the buildup of
axial resolution as a series of holographic images are
superposed by using a range of wavelengths. One no-
tices here the narrowing of the contour widths as the
synthesized coherence length shortens. Figure 4(b)
shows a few contour images at different axial dis-
tances.

In conclusion, we have shown that wave fields near
the hologram plane can be accurately reconstructed
for diffractive objects by using the angular spectrum
method. Consequently, the tomographic system
achieves a more flexible scanning range and more
manageable specimen size selection. The sensitivity
of our detection system is approximately 60 dB with-
out image accumulation or lock-in, which is now
lower than the performance of the standard OCT,
��100 dB� or full-field OCT ��90 dB�,2 where 200 im-
ages are locked in to obtain one tomographic image.
As in the case of full-field OCT, the sensitivity of the
WSDIH system is mainly limited by the electronic
noise of the camera and the dynamic range of the
CCD sensor, which is normally worse than those of
photomultiplier tubes or photodiodes. The sensitivity
can be greatly improved by using a CCD camera with
higher dynamic range or incorporating binning or im-
age lock-in techniques. The experiments presented
above demonstrate that such three-dimensional to-
mographic images are obtained without the need for
pixel-by-pixel scanning of the object volume. At this
stage of development, the acquisition time is limited
by the need to manually scan the laser wavelength.
In the near future it can be accomplished by a motor-
ized micrometer under computer control. Then the
limiting factor of scanning will be the camera frame
rate. In the above example, the calculation time used
to obtain one tomographic image is �0.25 s, which
can be greatly improved by using a parallel hardware
system in the future.
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